Preparation of Co₃O₄ Nanofibers via an Electrospinning Technique

Chang Lu SHAO*, Hong Yu GUAN, Shang Bin WEN, Bin CHEN Xing Hua YANG, Jian GONG, Yi Chun LIU

Center for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun 130024

Abstract: Thin PVA/cobalt acetate composite fibers were prepared by using sol-gel processing and electrospinning technique. After calcination of the above precursor fibers, Co_3O_4 nanofibers with a diameter of 50-150 nm could be successfully obtained. The fibers were characterized by SEM, FT-IR, WAXD, respectively.

Keywords: PVA/cobalt acetate composite, Co₃O₄ nanofibers.

Co₃O₄-based materials are suitable candidates for the construction of solid-state sensors¹, ², heterogeneous catalysts^{3, 4}, electrochromic devices⁵, and solar energy absorbers^{6, 7}. A few methods on the preparation of Co₃O₄ nanocrystalline powder, films and nanotube were reported^{8~10}. However, to our knowledge, there have been no reports on the preparation of Co₃O₄ nanofibers. In this paper, we obtained the electrospun fibers of PVA/cobalt acetate composite by using sol-gel processing and electrospinning technique. And, the precursor fibers were calcined to get the Co_3O_4 nanofibers. The procedure was 20.0 g aqueous PVA solution of 10 wt% was dropped slowly into the as follows. solution of cobalt acetate (1.5 g Co(CH₃COO)₂·4H₂O and 2.0g H₂O), and the reaction proceeded in a water bath at 50 °C for 5 h. Thus, a viscous gel of PVA/cobalt acetate composite was obtained. Then it was contained in a plastic capillary. A copper pin connected to a high-voltage generator was placed in the solution, and the solution was kept in the capillary by adjusting the angle between capillary and the fixed bar. A grounded iron drum, sprayed with an aluminium foil, served as counter electrode. A voltage of 20 kV was applied to the solution and a dense web of fibers was collected on the aluminium foil. The fibers thus formed were dried initially at 70 °C for 12 h under vacuum, and then calcined at 800 °C at a rising rate of 240 °C h⁻¹ and remained 10 h at the required temperature.

IR results showed that all the organic groups could be removed completely from PVA/cobalt acetate composite fibers after calcination at 800 °C, two peaks around 667 cm⁻¹ and 577 cm⁻¹ assigned to v_{Co-O} of $Co_3O_4^{-11, 12}$ appeared, indicating that the fibers

^{*} E-mail: changlushao@yahoo.com.cn

Figure 1 WAXD results for (a) PVA/cobalt acetate composite fibers; (b) calcination at 800 °C.

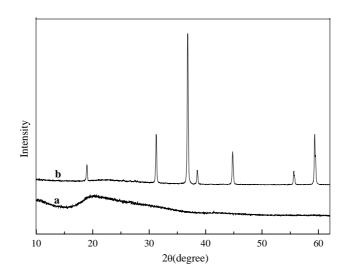
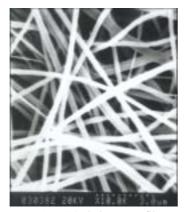
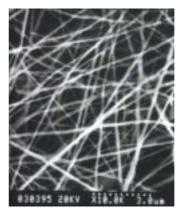




Figure 2 SEM of various fibers

(a) PVA/cobalt acetate fibers

(b) calcination at 800 °C

obtained at this temperature were pure inorganic Co_3O_4 species. The WAXD results in the next section also supported this suggestion.

Figure 1 gave the WAXD curve for various fibers samples. As showed in **Figure 1**(a), there existed a broad peak around $2\theta = 20^{\circ}$, corresponding to the (101) plane of PVA semi-crystalline¹³ in PVA/cobalt acetate composite fibers. This result indicated that the crystallinity of PVA was largely influenced by the presence of cobalt acetate in the PVA/cobalt acetate composite fibers, saying that there might be some interaction

494 Preparation of Co₃O₄ Nanofibers *via* an Electrospinning Technique

between PVA and cobalt acetate molecules. Notably, after the PVA/cobalt acetate composites fibers were calcined at 800 °C (**Figure 1(b**)), crystalline peak of PVA disappeared, and eight reflection peaks appeared at $2\theta = 19.0^{\circ}$, 31.3° , 36.8° , 38.6° , 44.8° , 55.8° , 59.3° , 65.2° , respectively, corresponding to the pure Co_3O_4 crystalline with cubic phase¹⁴. Comparing with the IR results, the products obtained at $800^{\circ}C$ were pure Co_3O_4 fibers.

The SEM photographs of PVA/cobalt acetate composite fibers and the fibers calcined at 800 °C were showed in **Figure 2**. It could be seen that nanofibers of Co_3O_4 , with alveolate surface and diameters of 50-150 nm, were obtained after calcining the PVA/cobalt acetate composite fibers at 800 °C. Meanwhile, due to the removal of PVA and the CH₃COO group of cobalt acetate molecule, the diameters of the fibers calcined at 800 °C (**Figure 2 (b**)) become smaller than which were not calcined (**Figure 2 (a**)).

For the first time, nanofibers of Co_3O_4 phase, with diameters of 50-150 nm, were prepared by using the electrospun thin fibers of PVA/cobalt acetate composites as precursor and through calcinations treatment. A new method for making nanofibers of inorganic materials might be provided. By modifying the parameters of sol-gel or electrospinning processing, one could also expect to be able to make nanofibers of inorganic materials with smaller diameter.

Acknowledgments

The present work is supported financially by the Natural Science Foundation of Jilin Province (No. 20020613).

References

- 1. H. Yamaura, J. Tamaki, K. Moriya, et al., J. Electrochem. Soc., 1997, 144, L158.
- 2. M. Ando, T. Kobayashi, S. Lijima, M. Haruta, J. Mater. Chem., 1997, 7, 1779.
- 3. P. Nkeng, J. Koening, J. Gautier, et al., J. Electroanal. Chem., 1996, 402, 81.
- 4. S. Weichel, P. Moller, J. Surf. Sci., 1998, 399, 219.
- 5. L. D. Burke, M. E. Lyons, O. J. Murphy, J. Electroanal. Chem., 1982, 132, 247.
- 6. M. G. Hutchins, P. J. Wright, P. D. Grebenik, Solar Energy Mater., 1987, 16, 113.
- 7. K. Ramachandram, C. O. Oriakhi, M. M. Lerner, et al., Mater. Res. Bull., 1996, 31, 767.
- 8. J. T. Jiu, Y. Ge, X. N. Li, L. Nie, *Materials Lett.*, **2002**, *54*, 260.
- 9. L. Armelao, D. Barreca, et al., Journal of Non-Crystalline Solids, 2001, 293-295, 477.
- 10. X. Y. Shi, S. B. Han, R. J. Sanedrin, F. M. Zhou, M. Selke, Chem. Mater., 2002, 14, 1897.
- 11. Y. Jiang, Y. Wu, B. Xie, Y. Xie, Y. T. Qian, Materials Chem. and Phys., 2002, 74, 234.
- 12. B. Pejova, A. Isahi, M. Najdoski, I. Grozdanov, Mater. Res. Bull., 2001, 36, 161.
- 13. Y. Nishio, R. S. Manley, *Macromolecules*, 1998, 21, 1270.
- 14. Z. Y. Yuan, F. Huang, C. Q. Feng, et al., Materials Chem. and Phys., 2003, 79, 1.

Received 14 April, 2003